Real Hypersurfaces in Quaternionic Projective Spaces with Commuting Tangent Jacobi Operators
نویسندگان
چکیده
From the classical differential equation of Jacobi fields, one naturally defines the Jacobi operator of a Riemannian manifold with respect to any tangent vector. A straightforward computation shows that any real, complex and quaternionic space forms satisfy that any two Jacobi operators commute. In this way, we classify the real hypersurfaces in quaternionic projective spaces all of whose tangent Jacobi operators commute. 2000 Mathematics Subject Classification. 53C15, 53B25.
منابع مشابه
Certain Conditions on the Ricci Tensor of Real Hypersurfaces in Quaternionic Projective Spaces
The purpose of this paper is to classify real hypersurfaces of quaternionic projective spaces whose Ricci tensor satisfy a pair of conditions on the maximal quaternionic distribution D? = Span fU1; U2; U3g. x0. Introduction Throughout this paper let us denote by M a connected real hypersurface in a quaternionic projective space QP, m=3, endowed with the metric g of constant quaternionic section...
متن کاملReal hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ - parallel
We classify real hypersurfaces in complex projective spaces whose structure Jacobi operator is Lie parallel in the direction of the structure vector field. 2004 Elsevier B.V. All rights reserved.
متن کاملReal Hypersurfaces in Quaternionic Space Forms Satyisfying Axioms of Planes
A Riemannian manifold satis es the axiom of 2-planes if at each point, there are su ciently many totally geodesic surfaces passing through that point. Real hypersurfaces in quaternionic space forms admit nice families of tangent planes, namely, totally real, half-quaternionic and quaternionic. Several de nitions of axiom of planes arise naturally when we consider such families of tangent planes...
متن کاملJacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form
Let M be a real hypersurface of a complex space form with almost contact metric structure (φ, ξ, η, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator Rξ = R(·, ξ)ξ is ξ-parallel. In particular, we prove that the condition ∇ξRξ = 0 characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic ...
متن کاملOn Real Hypersurfaces in Quaternionic Projective Space with D⊥-recurrent Second Fundamental Tensor
In this paper, we give a complete classification of real hypersurfaces in a quaternionic projective space QPm with ⊥-recurrent second fundamental tensor under certain condition on the orthogonal distribution .
متن کامل